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Autonomous Hamiltonian systems 

Consider an N degree of freedom autonomous 

Hamiltonian system having a Hamiltonian function of the 

form: 
 

H(q1,q2,…,qN, p1,p2,…,pN) 

The time evolution of an orbit (trajectory) with initial 

condition 

P(0)=(q1(0), q2(0),…,qN(0), p1(0), p2(0),…,pN(0)) 

positions momenta 

is governed by the Hamilton’s equations of motion 

 

 

i i

i i

dp dqH H
= -    ,    =

dt q dt p



Variational Equations 

We use the notation x = (q1,q2,…,qN,p1,p2,…,pN)T. The 

deviation vector from a given orbit is denoted by 

v = (δx1, δx2,…,δxn)T , with n=2N 

The time evolution of v is given by 

the so-called variational equations: 

 
dv

= -J P  v
dt

  i, j = 1,2, , n
  
 

  

2
N N

i j

N N i j

0 -I H
J =   ,  P =

I 0 x x

where 

Benettin & Galgani, 1979, in Laval and Gressillon (eds.), op cit, 93 



Symplectic Maps 
Consider an 2N-dimensional symplectic map T. In this 

case we have discrete time. 

This is an area-preserving map whose Jacobian matrix 

satisfies 

 T
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Symplectic Maps 

The evolution of an orbit with initial condition 

P(0)=(x1(0), x2(0),…,x2N(0))  

is governed by the equations of map T 

P(i+1)=T P(i)  ,  i=0,1,2,…  

The evolution of an initial deviation vector  

v(0) = (δx1(0), δx2(0),…, δx2N(0)) 

is given by the corresponding tangent map 




 i

T
v(i + 1) = v(i)  , i = 0,1, 2,

P



Lyapunov Exponents 

Roughly speaking, the Lyapunov exponents of a given 

orbit characterize the mean exponential rate of divergence 

of trajectories surrounding it.  

Consider an orbit in the 2N-dimensional phase space with 

initial condition x(0) and an initial deviation vector from it 

v(0). Then the mean exponential rate of divergence is:  

1
t

v(t)1
mLCE = = lim ln

t v(0)






Maximum Lyapunov Exponent 

If we start with more than one linearly independent 

deviation vectors they will align to the direction defined by 

the largest Lyapunov exponent for chaotic orbits.  

σ1=0  Regular motion 

σ10  Chaotic motion 



The  

Smaller ALignment Index  

(SALI)  

method 



Definition of Smaller 

Alignment Index (SALI) 
Consider the 2N-dimensional phase space of a conservative dynamical 

system (symplectic map or Hamiltonian flow).  

An orbit in that space with initial condition : 

 P(0)=(x1(0), x2(0),…,x2N(0)) 

and a deviation vector  

 v(0)=(δx1(0), δx2(0),…, δx2N(0)) 

The evolution in time (in maps the time is discrete and is equal to the 
number n of the iterations) of a deviation vector is defined by: 

•the variational equations (for Hamiltonian flows) and 

•the equations of the tangent map (for mappings)  



Definition of SALI 
We follow the evolution in time of two different initial 

deviation vectors (v1(0), v2(0)), and define SALI (Ch.S. 

2001, J. Phys. A) as: 

When the two vectors become collinear 

SALI(t) → 0  

 ˆ ˆ ˆ ˆ
1 2 1 2

SALI(t) = min v (t) + v (t) , v (t) - v (t)

ˆ 1

1

1

v (t)
v (t) =

v (t)

where 



Behavior of SALI for chaotic motion 

For chaotic orbits the two initially 

different deviation vectors tend to 

coincide with the direction defined 

by the maximum Lyapunov 

exponent. 
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Behavior of SALI for chaotic motion 

3
2 2 2 2i
i i 1 2 1 3

i=1

H = (q + p ) + q q + q q
2




We test the validity of the approximation SALIe-(σ1-σ2)t (Ch.S., 
Antonopoulos, Bountis, Vrahatis, 2004, J. Phys. A) for a chaotic orbit 
of the 3D Hamiltonian 

with ω1=1, ω2=1.4142, ω3=1.7321, Η=0.09 

σ10.037 

σ20.011 

slope=-(σ1-σ2)/ln(10) 



Behavior of SALI for regular motion 

Regular motion occurs on a torus and two different initial 

deviation vectors become tangent to the torus, generally  

having different directions.  
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Applications – Hénon-Heiles system 

For E=1/8 we consider the orbits with initial conditions: 

Regular orbit, x=0, y=0.55, px=0.2417, py=0 

Chaotic orbit, x=0, y=-0.016, px=0.49974, py=0 

Chaotic orbit, x=0, y=-0.01344, px=0.49982, py=0  

As an example, we consider the 2D Hénon-Heiles system: 



Applications – Hénon-Heiles system 

y 

py 



Applications – 4D map 
1 1 2

2 2 1 2 1 2 3 4

3 3 4

4 4 3 4 1 2 3 4

x = x + x

x = x  -  sin(x  + x ) -  [1 - cos(x  + x  + x  + x )] 
(mod 2 )

x = x  + x

x = x  -  sin(x  + x ) -  [1 - cos(x  + x  + x  + x )] 
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For ν=0.5, κ=0.1, μ=0.1 we consider the orbits: 

regular orbit C with initial conditions x1=0.5, x2=0, x3=0.5, x4=0.  

chaotic orbit D with initial conditions x1=3, x2=0, x3=0.5, x4=0. 
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Applications – 2D map 

1 1 2

2 2 1 2

x = x + x
  (mod 2 )

x = x  -  sin(x  + x )
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For ν=0.5 we consider the orbits: 

regular orbit A with initial conditions x1=2, x2=0. 

chaotic orbit B with initial conditions x1=3, x2=0. 



Behavior of SALI 

2D maps 

SALI→0 both for regular and chaotic orbits  

following, however, completely different time rates which 

allows us to distinguish between the two cases.  

Hamiltonian flows and multidimensional maps 

SALI→0 for chaotic orbits 

 

SALI→constant ≠ 0 for regular orbits  



Questions 

• Can rapidly reveal the nature of chaotic orbits with 

σ1σ2 (SALIe-(σ1-σ2)t)?  

 

• Depends on several Lyapunov exponents for chaotic 

orbits? 

 

• Exhibits power-law decay for regular orbits depending 

on the dimensionality of the tangent space of the 

reference orbit as for 2D maps? 

Can we generalize SALI so that the new index: 



The  

Generalized ALignment Indices  

(GALIs)  

method 



Definition of Generalized 

Alignment Index (GALI) 
SALI effectively measures the ‘area’ of the parallelogram 

formed by the two deviation vectors. 
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Definition of GALI 

In the case of an N degree of freedom Hamiltonian system or 

a 2N symplectic map we follow the evolution of  
 

k deviation vectors with 2≤k≤2N,  
 

and define (Ch.S., Bountis, Antonopoulos, 2007, Physica D) 

the Generalized Alignment Index (GALI) of order k : 

ˆ ˆ ˆ  
k 1 2 k

GALI (t) = v (t)  v (t)  ...  v (t)

ˆ 1

1

1

v (t)
v (t) =

v (t)

where 



Behavior of GALIk for chaotic motion 

GALIk (2≤k≤2N) tends exponentially to zero with 

exponents that involve the values of the first k largest 

Lyapunov exponents σ1, σ2, …, σk : 

 1 2 1 3 1 k- (σ -σ )+(σ -σ )+...+(σ -σ ) t

k
GALI (t)  e

The above relation is valid even if some Lyapunov 
exponents are equal, or very close to each other.  



Behavior of GALIk for chaotic motion 

2D Hamiltonian (Hénon-Heiles system) 

σ10.047 



Behavior of GALIk for chaotic motion 

N particles Fermi-Pasta-Ulam (FPU) system:  

with fixed boundary conditions, N=8 and β=1.5. 

   
 
  

 
N N

2 42

i i+1 i i+1 i

i=1 i=0

1 1 β
H = p + q - q + q - q

2 2 4



Behavior of GALIk for regular motion 
If the motion occurs on an s-dimensional torus with sN then the 
behavior of GALIk is given by (Ch.S., Bountis, Antonopoulos, 2008, 
Eur. Phys. J. Sp. Top.): 


  










k k-s

2(k-N)

constant if 2 k s

1
GALI (t)  if s < k 2N - s

t

1
if 2N - s < k 2N 

t



while in the common case with s=N we have : 

 






k

2(k-N)

constant if 2 k N

GALI (t)  1
if N < k 2N

t





Behavior of GALIk for regular motion 
N=8 FPU system: The unperturbed Hamiltonian (β=0) is written as a 

sum of the so-called harmonic energies Ei: 

 

 2 2 2

i i i i

1
E = P + ω Q ,  i = 1, ..., N

2
with: 

    
    

     
 

N N

i k i k i

k =1 k =1

2 kiπ 2 kiπ iπ
Q = q sin ,  P = p sin ,  ω = 2sin

N +1 N +1 N +1 N +1 2(N +1)



Global dynamics 
• GALI2 (practically equivalent to the use of SALI) 

• GALIN 

Chaotic motion: GALIN0 

(exponential decay) 

Regular motion: 

GALINconstant0 

3D Hamiltonian 

Subspace q3=p3=0, p20 for t=1000. 



Global dynamics 

GALIk with k>N 

The index tends to zero both for 

regular and chaotic orbits but with 

completely different time rates: 

Chaotic motion: exponential decay 

Regular motion: power law 

2D Hamiltonian (Hénon-Heiles) 

Time needed for GALI4<10-12 



Behavior of GALIk 

Regular motion:  

GALIk →constant ≠ 0 or GALIk →0 power law decay  
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 1 2 1 3 1 k- (σ -σ )+(σ -σ )+...+(σ -σ ) t

k
GALI (t)  e

Chaotic motion:  

GALIk→0 exponential decay 

 



Symmary 
• The Smaller ALignment Index (SALI) method is a fast, efficient and easy to 

compute chaos indicator.  

• Generalizing the SALI method we define the Generalized ALignment Index 
of order k (GALIk) as the volume of the generalized parallelepiped, whose 
edges are k unit deviation vectors.  

 

• Behaviour of GALIk :  

 Chaotic motion: it tends exponentially to zero with exponents that 
involve the values of several Lyapunov exponents. 

 Regular motion: it fluctuates around non-zero values for 2≤k≤s and 
goes to zero for s<k≤2N following power-laws, with s being the 
dimensionality of the torus.   

 

• GALIk indices :  

 can distinguish rapidly and with certainty between regular and chaotic motion.   

 can be used to characterize individual orbits as well as "chart" chaotic and 
regular domains in phase space. 
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